Government of Karnataka

Forest Department

Recruitment Examination (Main) for Range Forest Officers Training Course-2007
07 November-2007 (10.30am-1.30pm)

Option Paper : MATHEMATICS

Max, Marks: 100
Time: 3 Hours
All Section are compulsory

PART-A

(1 Mark each)

1) Answer all questions
a) Let V be the vector space of all functions from R into R. Show that $W=\{f: f(-x)=-f(x)\}$ is a subspace of V .
b) Find the value of $\lim _{x \rightarrow \infty}\left(\frac{x-1}{x-1}\right)^{x}$
c) Determine the value of $f(0)$ so that the function

$$
\mathrm{f}(\mathrm{x})=\frac{\left(a^{2}-a x+x^{2}\right)^{1 / 2}-}{(a+x)^{1 / 2}-} \frac{\left(a^{2}+a x+x^{2}\right)^{1 / 2}}{(\mathrm{a}-x)^{1 / 2}}
$$

is continuous for all x .
d) If a and b are elements of a group G and if

$$
\mathrm{a}^{2}=1, \mathrm{a}^{-1} \mathrm{~b}^{2} \mathrm{a}=\mathrm{ba} \text { then prove that } \mathrm{b}=\mathrm{a}
$$

e) Show that $\sigma=0$ ($\left.\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$ is even.
f) Prove that L (sinat $)=\frac{a}{\mathrm{~s}^{2}+\mathrm{a}^{2}}$ for $s>0$.
g) Find the locus of the points Z satisfying $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{3}$
h) Find the equation of the straight line joining the points ($-2,1,3$) and ($3,1,-2$).
i) If $\left|\begin{array}{lll}x & x^{2} & 1+x^{2} \\ y & y^{2} & 1+y^{2} \\ z & z^{2} & 1+z^{2}\end{array}\right|=0$ then prove that

The value of $x y z$ is $=1$.
j) Show that the rank of the matrix $\left(\begin{array}{ll}3 & 2 \\ 6 & 4\end{array}\right)$ is 1 .
k) Find the distance between the two planes $2 x-2 y+z+3=0$ and $4 x-4 y+2 z+5=0$.
I) Show that the series $2-2+2-2+$.. \qquad oscillates.
m) Find an integrating factor of $x\left(1-x^{2}\right) \mathrm{dy}+\left(2 x^{2} \mathrm{y}-\mathrm{y}-\mathrm{a} x^{3}\right) \mathrm{dx}=0$
n) If $f=\mathrm{r} \cos \theta+\tan \theta$ find gradf in polar co - ordinates
o) The length of a simple pendulum in increased by 44%. Show that the percentage increase in its time period is 20%.
p) Prove that $y=c x^{-1}+\mathrm{d}$ is a solution of $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx} \mathrm{x}^{2}}+\frac{2}{\mathrm{x}} \frac{\mathrm{dy}}{\mathrm{dx}}=0$
q) Find f_{x} and f_{y} when $\mathrm{f}(\mathrm{x}, \mathrm{y})=x^{2}+y^{2}$
r) Find the $\mathrm{n}^{\text {th }}$ derivative of $(a x+b)^{m}$
s) For any integer a show that $a^{3}=0,1 \operatorname{or} 6(\bmod 7)$
t) If $\mathrm{f}(\mathrm{t})=\left(\mathrm{t}-\mathrm{t}^{2}\right) \mathrm{i}+\mathrm{t}^{3} \mathrm{j}-3 \mathrm{k}$ then find $\int f(t) d t$.

PART-B
(3 Mark each)
2) Solve the linear congruence $9 x \equiv 21(\bmod 30)$

OR
Solve $x^{2}(y+1) d x+Y^{2}(x-1) d y=0$.
3) Let G and H be two groups and let η : $G \rightarrow H$ be a homomorphism where $N=K e r \eta$. Show that G $\quad-\frac{G}{N}$.

OR

Show that three concurrent lines with direction cosines $I_{1}, m_{1}, n_{1}, l_{2} m_{2} n_{2}$ and l_{3}, m_{3}, n_{3} are coplanar if $\left|\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right|=0$
4) Find the differential equation of the family of curves

$$
x y=A e^{x}+B e^{-x}+x^{2} \text { for different values of } A \text { and } B .
$$

OR
Solve $y^{111}-3 y^{11}+3 y^{1}-y=t^{2} e^{t}$ where $y(0)=1, y^{1}(0)=0, y^{11}(0)=-2$.
5) Show that any two bases of a finite dimensional vector space have the same number of vectors.

OR
Prove that a finite integral domain is a field.
6) Let $\mathrm{A}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6\end{array}\right)$ be in F_{3} where the characteristic of F is not 2 . Show that

$$
A^{3}-6 A^{2}+11 A-6=0
$$

OR

If $\Delta x=0.005, \Delta y=0.001$ be the absolute errors in $x=2.11$ and $y=4.15$, find the relative error in the computation of $x+y$.

PART-C

(12 Mark each)
7) Use Fermat's theorem to verify that 17 divides

$$
11^{104}+1
$$

Test for convergence or divergence of the series

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left[\sqrt{\mathrm{n}^{4}+1}-\sqrt{\mathrm{n}^{4}-1}\right] \\
\text { OR }
\end{gathered}
$$

Find the maximum and minimum values of $\sin x+\cos 2 x$
Solve

$$
x^{3}-6 x-9=0 \text { using cordon's method. }
$$

8) Prove that the lines $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$ and $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z-10}{8}$ are coplanar. Find also the point of intersection, find $\mathrm{L}^{-1}\left[\frac{1}{\left.s^{2}+1\right)^{2}}\right]$

OR

Show that the function $\mathrm{e}^{\mathrm{x}}(\cos y+\mathrm{I} \operatorname{siny})$ is holomorphic and find its derivative.

Let R be a commutative ring with unity and let M be an ideal of R. Prove that M is a maximal ideal of R if and only if $\frac{R}{M}$ is a field
9) If a function $f(z)$ is analytic for all values of Z and is bonded then show that f is a constant. Prove that grad (uv) $=u$ grad $v+v$ grad u.
OR

State and prove green's theorem in the plane. Using this evaluate

$$
\oint_{c}\left(x^{2}-\cosh y\right) d x+(y+\sin x) d y
$$

Where c is the rectangle with vertices $(0,0),(\pi .0)(\pi, 1)$ and $(0,1)$
10) Let V be a vector space over a field F, if V_{1} \qquad V_{n} is a basis of V over F and if W_{1} \qquad W_{m} in V are linearly independent over F then show that $\mathrm{m} \leq n$.

Find the bilinear transformation which transforms $z=2,1,0$ into $w=1,0, i$.

> OR

Solve by the method of variation of parameters $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x$.

Find the rank of matrix $\left(\begin{array}{cccc}1 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 1 & -3 & -2 & -1\end{array}\right)$
11) Solve

$$
\begin{aligned}
& x+y+z=1 \\
& 2 x+3 y+4 z=1 \\
& x-y-z=0
\end{aligned}
$$

Using cramer's rule.

Starting from gauss interpolation formula derive Bessel's central difference formula.

OR
Describe how to use trapezoidal and simpson's $1 / 3$ rule to evaluate $\pi=\int_{0}^{1} \frac{4 d x}{\left(1+x^{2}\right)}$
Find the inverse of the matrix $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$
Using cayley - Hamilton theorem.

